23020 Cyanine5 NHS ester, 5 mg 2730.00

Cyanine5 NHS ester

CY5 NHS ester是用于标记多肽、蛋白和寡核苷酸的氨基基团的活性染料。在标记反应中该染料需要少量的有机共溶剂(如DMF,DMSO)(请参照我们的推荐手册以获得更多帮助信息)。对于可溶性蛋白、各种各样的多肽和寡核苷酸而言,这种染料是非常理想而且成本低廉的。该染料在有机溶剂对小分子物质的标记也是非常有效的。对于更多的精细目标物,如易降解蛋白,如果DMF或DMSO会对其有影响,可以考虑water-soluble Cy5 NHS ester(水溶性Cy5 NHS ester染料),因为它们不需要有机溶剂助溶,而且具有和荧光染料类似的性质。  

订购货号 产品名称及规格 价格(¥)
13020 Cyanine5 NHS ester, 1 mg 1430.00
23020 Cyanine5 NHS ester, 5 mg 2730.00
43020 Cyanine5 NHS ester, 25 mg 5330.00
53020 Cyanine5 NHS ester, 50 mg 9035.00
63020 Cyanine5 NHS ester, 100 mg 15470.00

    在过去的几年里,CY5荧光团已经成为生命科学研究和诊断领域非常流行的分子标记物。这些荧光素的最强发射光为红光,在这个范围大多数CCD检测器具有最大检测灵敏度,而且是生物物质低背景区。染料的颜色是非常强烈的,因此在凝胶电泳中低至1nmol的量都能被肉眼观测到。CY5 NHS ester是用于标记多肽、蛋白和寡核苷酸的氨基基团的活性染料。在标记反应中该染料需要少量的有机共溶剂(如DMF,DMSO)(请参照我们的推荐手册以获得更多帮助信息)。对于可溶性蛋白、各种各样的多肽和寡核苷酸而言,这种染料是非常理想而且成本低廉的。该染料在有机溶剂对小分子物质的标记也是非常有效的。对于更多的精细目标物,如易降解蛋白,如果DMF或DMSO会对其有影响,可以考虑water-soluble Cy5 NHS ester(水溶性Cy5 NHS ester染料),因为它们不需要有机溶剂助溶,而且具有和荧光染料类似的性质。   CY5荧光团可以与很多的仪器如荧光显微镜、成像仪、扫描仪、荧光分析仪等相兼容。许多的CY5衍生物——CY5 NHS ester可以替代Alexa Fluor 647和 DyLight 649等活化酯(activated esters)。       推荐手册 氨基分子的NHS酯标记   Cy® is a trademark of GE Healthcare. General properties  

Appearance: dark blue powder
Molecular weight: 616.19
Molecular formula: C36H42ClN3O4
CAS number: 1032678-42-4, 350686-88-3
Solubility: good in polar (DMSO, DMF) and chlorinated (DCM, chlroform) organic solvents, low solubility in water
Quality control: NMR 1H (95%) and 13C, TLC, functional testing
Storage conditions: Storage: 24 months after receival at -20°C in the dark. Transportation: at room temperature for up to 3 weeks. Avoid prolonged exposure to light. Desiccate.
MSDS: Download

Spectral properties  

Excitation maximum, nm: 646
Extinction coefficient at excitation maximum, Lmol-1cm-1: 250000
Emission maximum, nm: 662
Fluorescence quantum yield: 0.2

 

Product citations

  • Geertsema, H.J.; Kulczyk, A.W.; Richardson, C.C.; van Oijen, A.M. Single-molecule studies of polymerase dynamics and stoichiometry at the bacteriophage T7 replication machinery. Proceedings of the National Academy of Sciences, 2014, 111(11), 4073-4078. doi: 10.1073/pnas.1402010111
  • Graen, T.M.D.; Hoefling, M.; Grubmüller, H. AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. Journal of Chemical Theory and Computation,2014, 10(12), 5505-5512. doi: 10.1021/ct500869p
  • Hu, X.; Wang, Q.; Liu, Y.; Liu, H.; Qin, C.; Cheng, K.; Robinson, W.; Gray, B.D.; Pak, K.Y.; Yu, A. et al. Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes. Biomaterials, 2014, 35(26), 7511-7521. doi:10.1016/j.biomaterials.2014.05.042
  • Novo, L.; Rizzo, L.Y.; Golombek, S.K.; Dakwar, G.R.; Lou, B.; Remaut, K.; Mastrobattista, E.; van Nostrum, C.F.; Jahnen-Dechent, W.; Kiessling, F. et al. Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175. doi: 10.1016/j.jconrel.2014.08.028
  • Zhang, Y.; Ge, C.; Zhu, C.; Salaita, K. DNA-based digital tension probes reveal integrin forces during early cell adhesion.Nature Communications, 2014, 5, 5167-5167. doi: 10.1038/ncomms6167
  • Chen, H.; Xiao, L.; Anraku, Y.; Mi, P.; Liu, X.; Cabral, H.; Inoue, A.; Nomoto, T.; Kishimura, A.; Nishiyama, N. et al. Polyion Complex Vesicles for Photoinduced Intracellular Delivery of Amphiphilic Photosensitizer. Journal of the American Chemical Society, 2014, 136(1), 157-163. doi: 10.1021/ja406992w
  • Albertazzi, L.; Martinez-Veracoechea, F.J.; Leenders, C.M.A.; Voets, I.K.; Frenkel, D.; Meijer, E.W. Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proceedings of the National Academy of Sciences, 2013, 110(30), 12203-12208. doi: 10.1073/pnas.1303109110
  • Cheng, M.-C.; Leske, A.T.; Matsuoka, T.; Kim, B.C.; Lee, J.; Burns, M.A.; Takayama, S.; Biteen, J.S. Super-Resolution Imaging of PDMS Nanochannels by Single-Molecule Micelle-Assisted Blink Microscopy. The Journal of Physical Chemistry B, 2013, 117(16), 4406-4411. doi: 10.1021/jp307635v
  • Haller, A.; Altman, R.B.; Souliere, M.F.; Blanchard, S.C.; Micura, R. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution. Proceedings of the National Academy of Sciences, 2013, 110(11), 4188-4193. doi:10.1073/pnas.1218062110
  • He, H.; Chen, S.; Zhou, J.; Dou, Y.; Song, L.; Che, L.; Zhou, X.; Chen, X.; Jia, Y.; Zhang, J. et al. Cyclodextrin-derived pH-responsive nanoparticles for delivery of paclitaxel. Biomaterials, 2013, 34(21), 5344-5358. doi:10.1016/j.biomaterials.2013.03.068
  • Rimpelová, S.; Bříza, T.; Králová, J.; Záruba, K.; Kejík, Z.; Císařová, I.; Martásek, P.; Ruml, T.; Král, V. Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chemistry, 2013, 24(9), 1445-1454. doi:10.1021/bc400291f
  • Soulière, M.F.; Altman, R.B.; Schwarz, V.; Haller, A.; Blanchard, S.C.; Micura, R. Tuning a riboswitch response through structural extension of a pseudoknot. Proceedings of the National Academy of Sciences, 2013, 110(35), E3256-E3264. doi:10.1073/pnas.1304585110
  • Yang, H.; Mao, H.; Wan, Z.; Zhu, A.; Guo, M.; Li, Y.; Li, X.; Wan, J.; Yang, X.; Shuai, X. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials,2013, 34(36), 9124-9133. doi: 10.1016/j.biomaterials.2013.08.022
  • Pecqueur, L.; Duellberg, C.; Dreier, B.; Jiang, Q.; Wang, C.; Pluckthun, A.; Surrey, T.; Gigant, B.; Knossow, M. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proceedings of the National Academy of Sciences, 2012, 109(30), 12011-12016. doi: 10.1073/pnas.1204129109
  • Sparks, J.; Slobodkin, G.; Matar, M.; Congo, R.; Ulkoski, D.; Rea-Ramsey, A.; Pence, C.; Rice, J.; McClure, D.; Polach, K.J. et al.Versatile cationic lipids for siRNA delivery. Journal of Controlled Release, 2012, 158(2), 269-276. doi:10.1016/j.jconrel.2011.11.006
  1. Chiang, W.-L.; Lin, T.-T.; Sureshbabu, R.; Chia, W.-T.; Hsiao, H.-C.; Liu, H.-Y.; Yang, C.-M.; Sung, H.-W. A rapid drug release system with a NIR light-activated molecular switch for dual-modality photothermal/antibiotic treatments of subcutaneous abscesses. Journal of Controlled Release, 2015, 199, 53–62. doi: 10.1016/j.jconrel.2014.12.011
  2. Bříza, T.; Rimpelová, S.; Králová, J.; Záruba, K.; Kejík, Z.; Ruml, T.; Martásek, P.; Král, V. Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dyes and Pigments, 2014, 107, 51-59. doi: 10.1016/j.dyepig.2013.12.021
  3. Bamrungsap, S.; Apiwat, C.; Chantima, W.; Dharakul, T.; Wiriyachaiporn, N. Rapid and sensitive lateral flow immunoassay for influenza antigen using fluorescently-doped silica nanoparticles. Microchimica Acta, 2014, 181(1–2), 223-230. doi:10.1007/s00604-013-1106-4
  4. Duellberg, C.; Trokter, M.; Jha, R.; Sen, I.; Steinmetz, M.O.; Surrey, T. Reconstitution of a hierarchical +TIP interaction network controlling microtubule end tracking of dynein. Nature Cell Biology, 2014, 16(8), 804-811. doi: 10.1038/ncb2999